
Quad Core AMD Opteron™
Processor Overview

Brian Waldecker, Ph.D.

Senior Member of Technical Staff

AMD, Austin

10/15/2008

2 October 14, 2008

Outline

1. Opteron and Multi-Core Architecture

2. Caches

3. Prefetching

4. Programming Hints

5. Performance Examples

3 October 14, 2008

AMD’s Third Generation OpteronTM

Processor Technology

Native quad core die

Optimized for 65nm SOI
and beyond

IPC enhanced
CPU cores

32B instruction fetch

Improved branch prediction

Out-of-order load execution

Up to 4 DP FLOPS/cycle

Dual 128-bit SSE dataflow

Dual 128-bit loads per cycle

Instruction Extensions

Power Management Extensions

Enhanced Direct
Connect Architecture
and Northbridge

Enhanced
HyperTransportTM links

Enhanced crossbar

DDR2 with migration
path to DDR3

Enhanced power
management and RAS

Expandable shared
L3 cache

4 October 14, 2008

Comprehensive Upgrades for SSE128
128bit FPU

Can perform SSE MOVs in the FP “store” pipe

� Execute two generic SSE ops + SSE MOV each cycle (+ two 128-bit SSE
loads)

36 Dedicated x 128-
bit ops

36 Dedicated x
64-bit ops

FP Scheduler
Depth

128 bits/cycle64 bits/cycleL2/NB Bandwidth

2 x 128bit
loads/cycle

2 x 64bit
loads/cycle

Data Cache
Bandwidth

32 bytes/cycle +
unaligned Ld-Ops

16 bytes/cycleInstruction Fetch
Bandwidth

128 + SSE MOVs64SSE Exec Width

3rd Gen. “Barcelona”2nd Gen. Opteron Parameter

SSE Unaligned Load-Execute mode

� Remove alignment requirements for SSE ld-op instructions

� Eliminate awkward pairs of separate load and compute instructions

� To improve instruction packing and decoding efficiency

5 October 14, 2008

Core IPC improvements

L1
Icache
64KB

Fetch

Int Decode & Rename

µOPs

36-entry FP scheduler

FADD FMISCFMUL

Branch
Prediction

44-entry
Load/
Store
Queue

Instruction Control Unit (72 entries)L1
Dcache
64KB

Fastpath Microcode Engine

Scan/Align

FP Decode & Rename

AGU

ALU

AGU

ALU

MULT

AGU

ALU

Res Res Res

•Improve Branch Prediction.
•TLB enhancements.
•More out of order Ld/St
capability.
•New Instructions

•POPCNT / LZCNT
•EXTRQ / INSERTQ
•MOVNTSD / MOVNTSS

•Fastpath support for FP to
Integer data movement.

6 October 14, 2008

TLB Enhancements

•Support for 1GB pagesize (4k, 2M, 1G)

•48 bit physical addresses = 256TB (increase from previous 40bits)

•Data TLB

– L1 Data TLB

– 48 entries, fully associative

– all 48 entries support any pagesize

– L2 TLB

– 512 4k entries, or

– 128 2M entries

� Instruction TLB

– L1 Instruction TLB

– fully associative

– support for 4k or 2M pagesizes

– L2 Instruction TLB

7 October 14, 2008

Data Prefetch

� Hardware prefetching

– DRAM prefetcher

� tracks positive, negative, non-unit strides.

� dedicated buffer (in NB) to hold prefetched data.

� Aggressively use idle DRAM cycles.

– Core prefetchers

� Does hardware prefetching into L1 Dcache.

� Software prefetching instructions

– MOV (prefetch via load / store)

– prefetcht0, prefetcht1, prefetcht2 (currently all treated the same)

– prefetchw = prefetch with intent to modify

– prefetchnta = prefetch non-temporal (favor for replacement)

8 October 14, 2008

Cache Hierarchy

Dedicated L1 cache

– 2 way associativity.

– 8 banks.

– 2 128bit loads per cycle.

Dedicated L2 cache

– 16 way associativity.

Shared L3 cache

– 32 way associativity.

– fills from L3 leave likely
shared lines in L3.

– sharing aware replacement
policy.

2MB

Cache
Control

64KB

512KB

Core 1

Cache
Control

64KB

512KB

Core 2

Cache
Control

64KB

512KB

Core 3

Cache
Control

64KB

512KB

Core 4

9 October 14, 2008

Multi-socket System overview

MCT

n
c
H
T
-H
B

c
H
T

XBAR

S
R
I

core0

core1
core2
core3

cHT

MCT

n
c
H
T
-H
B

c
H
T

S
R
I

core0

core1
core2
core3

cHT

DRAM DRAM

XBAR

I/O I/O

key:
cHT = coherent HyperTransport
ncHT = non-coherent HyperTransport
XBAR = crossbar switch
SRI = system request interface (memory access, cache probes, etc.)
MCT = memory controller
HB = host bridge (e.g. HT to PCI, SeaStar, etc.)

Inter-socket Probes and Probe Responses travel:
SRI -> XBAR -> cHT -> cHT -> XBAR -> SRI

Probes Requests initiate at home memory node, but
return directly to node making initial memory request.

10 October 14, 2008

Cache Coherency (MOESI protocol)

Invalid Exclusive

Modified

Owned

Shared

Read Hit
Probe Read Hit

Read Hit
Write HitProb

e Re
ad H

it

Wri
te H

it

Prob
e W

rite H
it

Write Miss (WB memory)

W
rite

 H
it

Probe Write Hit

Read Miss Exclusive

P
ro
b
e
 W

ri
te
 H
it

R
e
a
d
 M
is
s
 S
h
a
re
d

Read Hit
Probe Read Hit

Probe Write Hit

Pr
ob
e R

ea
d H

it

•“Read” and “Write” are by this core.
•“Probe Read” and “Probe Write” are
reads and writes by others, that must
probe this core’s caches.

(May consider Owned as
special case of Shared)

11 October 14, 2008

Cache Coherency (Practical Advice)

• Avoid shared read and shared write data in same cacheline.

• Avoid gratuitously modifying shared data.

– Sharing aware L3 helps within a chip, but doesn’t make such
updates free.

– Minimize false sharing where compiler has to play it safe.

• Requirement to wait for all probe responses means local
memory and remote cache accesses have similar latencies.

– Sometimes thinking of just memory is just fine.

– Let library and compiler writers worry about being uber-clever.

• Aliasing, Aliasing, Aliasing of addresses. (Help the compiler).

– If compiler’s unsure about potential aliasing it must play it safe
and generate extra stores and loads, instead of working only with
registers.

12 October 14, 2008

Sharing Aware (Partially Inclusive) L3

• Inclusive vs. Exclusive Cache Paradigms

– Inclusive: L3 contains L2 contains L1 (i.e. supersets).

– Exclusive: L3, L2, and L1 are disjoint sets.

• L3 tracks core that last touched cacheline.

– Read request from a different core cause L3 to retain copy
of data in O or S state.

– i.e. assumes data shared, hence inclusive behavior.

– Read from same core causes L3 to return data and
invalidate cacheline in L3 (not retain a copy).

– i.e. assumes data not shared, hence exclusive cache behavior.

– Writes from same core or different cores implemented
according to exclusive cache paradigm.

13 October 14, 2008

A Few Programming Hints
L3 Cache Data Sharing

Optimizing Producer Consumer ring buffers

1. Data gets into L3 by spilling from L1+L2.

2. Consumer must “lag” producer by at least L1+L2 bytes so data
is in L3 when consumed. (artifact of victim cache design).

3. Producer must not get too far ahead or it will flood L3 and evict
unconsumed lines.

4. Producer must lag consumer by at least L1+L2 bytes so data is
written into L3 with minimal collision with Consumer. (MOESI
artifact).

5. Consumer should use PrefetchW* to prefetch data.

6. Ring Buffer should be at least 2 x (L1+L2) in size, plus some
cushion.

7. Remember, to account for L3 size per Producer-Consumer pair.
(when running 1 pair vs. 2 pairs per chip).

* PrefetchW brings data into cache in M state. Otherwise data might come in
as S state and L3 retains a copy in O state.

14 October 14, 2008

A Few Programming Hints

• Use SSE2 instructions that modify entire 128bit SSE register instead
of preserving one half.

•Generally good to prefetch 6 to 8 cachelines ahead

– Latency-Bandwidth product estimates how much data must be “in-flight”

� 1P, DDR2-800 ~= 53ns * 10GB/s = 530 Bytes = ~8 cache lines in flight.

� 2P, DDR2-667 ~= 81ns * 17GB/s = 1377 Bytes = ~21 cache lines in flight
(combined across both Northbridges).

• Try to have 100 cycles of computation in loop body between
successive prefetches

• Avoid issuing multiple software prefetches to the same cacheline

• Unroll loops enough times so each iteration works on 1 or more
cachelines of data.

note: neither hw or sw prefetches will be allowed to generate page
faults, but a TLB miss on a prefetch can initiate a TLB fill.

15 October 14, 2008

A Few Programming Hints

movntmovnthwprefetcher +
prefetchw

hwprefetcher
+ prefetchw

Sequential write only

movntmovntprefetchwprefetchwWrite only

prefetchntaprefetchntaprefetchwprefetchwSequential read-
write

prefetchntaprefetchntaprefetchwprefetchwRead-write

prefetchntaprefetchntahwprefetcher +
prefetch

hwprefetcher
+ prefetch

Sequential read only

prefetchntaprefetchntaprefetchprefetch or
prefetchnta

Read only

Not ReusedReused

Greater than
½ L2 size

Less than ½ L2 size or of unknown
size

Less than ½
L1 size

Data

Which Prefetch to use ?

16 October 14, 2008

SOME MULTI-CORE
PERFORMANCE EXAMPLES

17 October 14, 2008

OpenMP Stream – Two Sockets

STREAM scaling
2 socket 2.3 GHz Barcelona DDR2-667

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4 5 6 7 8

Num Threads

M
B

/s

Copy:

Scale:

Add:

Triad:

Supermicro H8DMU serverboard,
Two 2.3GHz Barcelona cpus,
8 x 2GB DDR2-667 CL5 memory
SLES10 SP1, Pathscale 3.1 C compiler

18 October 14, 2008

Levesque Loops 41080 and 41081
#define LCOUNT 1000000
#define N 11
#define AIDX2 128
#define BIDX2 14

double A[N][AIDX2];
double B[N][BIDX2];
double c0, c1, c2, c3, c4, c5, c6, c7, c8;

int Work41080() {
int i,j,l;

for (l=0; l < LCOUNT; l++) {
for (i=0; i < N; i++) {
A[i][0] = c1*A[i][12] + c2*A[i][11] + c3*A[i][10] +

c4*A[i][9] + c5*A[i][8] + c6*A[i][7] +
c7*A[i][6] + c0*A[i][4] + A[i][5] + A[i][2];

}
}
return(0);

}

int Work41081() {
int i,j,l;

for (l=0; l < LCOUNT; l++) {
for (i=0; i < N; i++) {
B[i][0] = c1*B[i][12] + c2*B[i][11] + c3*B[i][10] +

c4*B[i][9] + c5*B[i][8] + c6*B[i][7] +
c7*B[i][6] + c0*B[i][4] + B[i][5] + B[i][2];

}
}
return(0);

}

Notes:
• C translation of original Fortran
code to facilitate performance
counter instrumentation.
• Array indices were reversed
accordingly.

19 October 14, 2008

IPC, Cycle, and Instruction Counts

41081
(B[i][])

41080
(A[i][])

Loop IPCUser CyclesUser
Instructions

TSC

1.631001198048238323016777198239940

1.656350195017197323016777195183582

• Instrumentation inserted just before and after loops to
read HW performance counters.
• Only difference in loops was dimension of the fast moving
array index.

• Each iteration on A[i] strides 1024 bytes
• Each iteration on B[i] strides 112 bytes

• Powers of two alignment can sometimes be suboptimal,
but not always.
• Best Advice: Proof is in the pudding, try padding and see.

A[11][128], sizeof(A[0][])=1024, (&A[i+1][0] - &A[i][0])=1024 bytes
B[11][14], sizeof(B[0][])=112, (&B[i+1][0] - &B[i][0])=112 bytes

20 October 14, 2008

Opteron™ (Barcelona) System

Tyan Thunder n425QE (S4985E)
Four Opteron 8356 CPUs @ 2.3GHz
16 x 2GB DDR2-667
SLES10 SP1 X86_64
PathScale Compiler Suite 3.1

Multi-core Performance Example

SPEC OMPL2001 (SPEC-HPG OpenMP benchmark)
313.swim_l (shallow water ocean model)

21 October 14, 2008

Multi-core Performance Example
313.swim_l (shallow water modeling, large dataset)

* Pathscale ™ Compiler Suite, Version 3.1, SLES10 SP1

Three sets of compiler* flags used:

“Ofast”
-mp -Ofast -mcpu=barcelona -OPT:early_mp=on -mcmodel=medium

“Ofast_simd0”
-mp -Ofast -mcpu=barcelona -OPT:early_mp=on -LNO:simd=0 -mcmodel=medium

“Ofast_movnti2500”
-mp -Ofast -mcpu=barcelona -OPT:early_mp=on -CG:movnti=2500 -mcmodel=medium

1785s (30m)Ofast_movnti2500

1736s (29m)Ofast_simd0

7194s (120m)Ofast

Runtime in secs. (mins.)Flags

Too much of a good thing? (streaming stores or vectorization)

22 October 14, 2008

Multi-core Performance Example
313.swim_l (shallow water modeling, large dataset)

Profiling shows

Ofast
samples % symbol name
598797565 79.1052 __ompdo_calc3_1
90931114 12.0126 __ompregion_calc2_1
48912887 6.4617 __ompregion_calc1_1
17952271 2.3716 __ompdo_MAIN__1
153331 0.0203 __ompdo_calc3z_1

Ofast_simd0
samples % symbol name
68233066 34.4688 __ompregion_calc2_1
61859772 31.2492 __ompdo_calc3_1
48931003 24.7181 __ompregion_calc1_1
18617176 9.4047 __ompdo_MAIN__1
132326 0.0668 __ompdo_calc3_2

Ofast_movnti2500
samples % symbol name
68314854 34.4881 __ompregion_calc2_1
61749164 31.1735 __ompdo_calc3_1
48932509 24.7031 __ompregion_calc1_1
18770527 9.4761 __ompdo_MAIN__1
132286 0.0668 __ompdo_calc3_2

Problem Size:
7701 x 7701 grid, REAL*8
452MB per array (5.8GB total)

Program Structure:
10 NCYCLE=NCYCLE+1
Calc1 (writes 4 arrays)
...

Calc2 (writes 3 arrays)
...

Calc3 (writes 6 arrays)
...

GOTO 10

Oprofile: Counted CPU_CLK_UNHALTED events (Cycles outside of halt state)

23 October 14, 2008

Multi-core Performance Example
313.swim_l (shallow water modeling, large dataset)

* Pathscale ™ Compiler Suite, Version 3.1, SLES10 SP1

Performance Counters

default "-LNO:simd=0" "-CG:movnti=2500"
CPI 14 2.55 3.7
Clocks(B) 15373 4107 4146
Insts(B) 1100 1618 1096
L3Req 440.000 161.800 142.480
L3Miss 330.000 134.294 134.808
totSSE 792.000 1164.960 789.120
FPadd pipe 583.000 388.320 252.080
FPmult pipe 242.000 210.340 151.248
FPstore pipe 291.500 142.384 113.984
PgOpen 253.000 37.214 36.168
PgClose 233.200 114.878 111.792
PgCflct 114.400 63.102 61.376

absolute(B)

Ofast = default
Ofast_simd0 = -LNO:simd=0
Ofast_movnti2500 = -CG:movnti=2500

24 October 14, 2008

Summary

Core Improvements:

� Core IPC, Caches and TLB.

� FPU and memory performance.

Multi-Core Implications:

� Flop rich environment.

� Shared L3 data, “partially inclusive” nature.

Multi-Socket Implications (looking forward – i.e. XT5):

� NUMA awareness.

� Cache Probing, Data Transfer across HT links.

25 October 14, 2008

References

• AMD Opteron Processor Families Technical Documentation
– http://www.amd.com/us-en/Processors/TechnicalResources/0,,30_182_739_9003,00.html

• Bios and Kernel Developers Guide (BKDG) on AMD website.

– RevF cpus are denoted as “Family 0Fh”.

– Quadcore BKDG is “Family 10h”.

� Portions useful to others than just Bios and Kernel developers.

• Software Optimization Guide for AMD64 Processors

– Quadcore version available on AMD website.

26 October 14, 2008

Trademark Attribution

AMD, the AMD Arrow logo, AMD Opteron, and combinations thereof are trademarks of Advanced Micro
Devices, Inc. in the United States and/or other jurisdictions. HyperTransport is a licensed trademark of the
HyperTransport Technology Consortium. Linux is a registered trademark of Linus Torvalds. Other names
used in this presentation are for identification purposes only and may be trademarks of their respective
owners.

©2008 Advanced Micro Devices, Inc. All rights reserved.

